116 research outputs found

    A cascade MPC control structure for PMSM with speed ripple minimization

    No full text
    This paper addresses the problem of reducing the impact of periodic disturbances arising from the current sensor offset error on the speed control of a PMSM. The new results are based on a cascade model predictive control scheme with embedded disturbance model, where the per unit model is utilized to improve the numerical condition of the scheme. Results from an experimental application are given to support the design

    Experimentally validated continuous-time repetitive control of non-minimum phase plants with a prescribed degree of stability

    No full text
    This paper considers the application of continuous-time repetitive control to non-minimum phase plants in a continuous-time model predictive control setting. In particular, it is shown how some critical performance problems associated with repetitive control of such plants can be avoided by use of predictive control with a prescribed degree of stability. The results developed are first illustrated by simulation studies and then through experimental tests on a non-minimum phase electro-mechanical system

    Switched Linear Model Predictive Controllers for Periodic Exogenous Signals

    No full text
    This paper develops linear switched controllers for periodic exogenous signals using the framework of a continuous-time model predictive control. In this framework, the control signal is generated by an algorithm that uses receding horizon control principle with an on-line optimization scheme that permits inclusion of operational constraints. Unlike traditional repetitive controllers, applying this method in the form of switched linear controllers ensures rumpless transfer from one controller to another. Simulation studies are included to demonstrate the efficacy of the design with or without hard constraints

    Indirect approach to continuous time system identification of food extruder

    Get PDF
    A three-stage approach to system identification in the continuous time is presented which is appropriate for day-to-day application by plant engineers in the process industry. The three stages are: data acquisition using relay feedback; non-parametric identification of the system step response; and parametric model fitting of the identified step response. The method is evaluated on a pilot-scale food-cooking extruder

    Intermittent predictive control of an inverted pendulum

    Get PDF
    Intermittent predictive pole-placement control is successfully applied to the constrained-state control of a prestabilised experimental inverted pendulum

    Predictive Repetitive Control Based on Frequency Decomposition

    Get PDF
    Abstract-This paper develops a predictive repetitive control algorithm based on frequency decomposition. In particular,, the periodic reference signal is first represented using a frequency sampling filter model and then the coefficients of the model are analyzed to determine its dominant frequency components. Using the internal model control principle, the dominant frequency components are embedded in model used to obtain the predictive repetitive control algorithm such that the periodic reference is followed with zero steadystate error. The design framework here is based on predictive control using Laguerre functions and hence plant operational constraints are naturally incorporated in the design and its implementation. keyword Periodic set-point signal, periodic disturbance, predictive control, constrained control, optimization

    Data compression for estimation of the physical parameters of stable and unstable linear systems

    Get PDF
    A two-stage method for the identification of physical system parameters from experimental data is presented. The first stage compresses the data as an empirical model which encapsulates the data content at frequencies of interest. The second stage then uses data extracted from the empirical model of the first stage within a nonlinear estimation scheme to estimate the unknown physical parameters. Furthermore, the paper proposes use of exponential data weighting in the identification of partially unknown, unstable systems so that they can be treated in the same framework as stable systems. Experimental data are used to demonstrate the efficacy of the proposed approach

    Human-centered design and evaluation of AI-empowered clinical decision support systems: a systematic review

    Get PDF
    IntroductionArtificial intelligence (AI) technologies are increasingly applied to empower clinical decision support systems (CDSS), providing patient-specific recommendations to improve clinical work. Equally important to technical advancement is human, social, and contextual factors that impact the successful implementation and user adoption of AI-empowered CDSS (AI-CDSS). With the growing interest in human-centered design and evaluation of such tools, it is critical to synthesize the knowledge and experiences reported in prior work and shed light on future work.MethodsFollowing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a systematic review to gain an in-depth understanding of how AI-empowered CDSS was used, designed, and evaluated, and how clinician users perceived such systems. We performed literature search in five databases for articles published between the years 2011 and 2022. A total of 19874 articles were retrieved and screened, with 20 articles included for in-depth analysis.ResultsThe reviewed studies assessed different aspects of AI-CDSS, including effectiveness (e.g., improved patient evaluation and work efficiency), user needs (e.g., informational and technological needs), user experience (e.g., satisfaction, trust, usability, workload, and understandability), and other dimensions (e.g., the impact of AI-CDSS on workflow and patient-provider relationship). Despite the promising nature of AI-CDSS, our findings highlighted six major challenges of implementing such systems, including technical limitation, workflow misalignment, attitudinal barriers, informational barriers, usability issues, and environmental barriers. These sociotechnical challenges prevent the effective use of AI-based CDSS interventions in clinical settings.DiscussionOur study highlights the paucity of studies examining the user needs, perceptions, and experiences of AI-CDSS. Based on the findings, we discuss design implications and future research directions
    • ā€¦
    corecore